
CHAPTER 8

COMPUTER INSTRUCTIONS AND
MAN/MACHINE INTERFACES

INTRODUCTION

You have probably heard people talk about the various computer programming
languages used to write computer programs. Maybe you have even written some.
Programming languages include procedural-type languages. Examples are
COBOL (COmmon Business Oriented Language) to solve business-type problems,
and FORTRAN (FORmula Translation) to solve mathematical-type problems.
Other languages are interactive languages that enable a person to communicate with
a computer in a conversational mode to develop programs. BASIC (Beginner’s
All-Purpose Symbolic Instruction Code) is an example of an interactive language.
Another language called Ada is the language developed for the Department of
Defense for use in embedded applications; for example, where a computer serves
as a control system. (Ada is named for Ada Augusta Byron, Countess of Lovelace,
for her achievements relating to computers. She was a full collaborator and
suggested the use of the binary system rather than the decimal system to Charles
Babbage, who is recognized as the father of computers.) These are all considered
high-level programming languages in that their instructions are in human readable
form, such as ADD A to B; LET X = Y, IF A > Y, THEN PRINT Y, and so on.
These types of instructions must be translated into machine code for execution by
a computer. This is accomplished through special language translation programs.
For high-level languages, a compiler program maybe used.

There are two other levels of computer languages: assembly language and
machine language. Assembly languages use mnemonics, symbols, to represent
operations. For example, “A” might mean add and “STR” might mean store. Like
high-level languages, these must be translated before a computer can execute the
instructions. To translate assembly language programs, an assembler program is
used.

By now, you have probably noticed that for an instruction to be executed, it
must be in machine code that consists of a series of 0’s and 1’s—the only things a
computer can understand. You have probably also realized that to write instructions
in 0’s and 1’s would be tedious, difficult, and time consuming. Therefore, the
assembly languages and the high-level languages provide easier means for people
to use to interface with computers to specify the steps a computer is to perform. As
a technician who is looking primarily at the internal functions of a computer, you
need to understand machine code and how it works. Some of the
operator/maintenance panels display information in binary, as you have already
learned. It will be up to you to interpret codes as meaningful information. Other
displays present information in commonly used words, terms, and numbers. In
these cases a computer, through program instructions, translates/interprets the
binary codes into meaningful information. This information is then presented to
you.

8-1

As we have just said, the machine instructions (code) provide the computer
with the means to carry out various operations; both internal and external. Internal
and external operations include processing the data and interfacing with other
computers, peripherals, and display and communications systems as part of a
computer system and performing maintenance.

The man/machine interfaces enable you to communicate with the computer’s
hardware and software through controlling devices and software/programs.

After completing this chapter, you should be able to:

l

l

l

Describe and recognize instruction types and their uses

Describe the types of instructions, their designators and classes, used by
computers

Describe how to interface with a computer’s hardware and software

We begin by discussing computer instructions; program types; and instruction
levels, types, interpretation, formats, sizes, and operand addressing.

TOPIC 1—COMPUTER
INSTRUCTIONS

Computer instructions tell the equipment to
perform a designated operation. These machine
instructions are contained in an instruction set (the
computer’s repertoire of instructions). They will be
processed by the CPU. Some computers have an I/O
controller (IOC) unit with its own set of instructions.
Each instruction in the set/repertoire contains at least an
operation (op) code to tell the CPU what operation to
peform. It may also contain an operand to identify the
address part of the instruction and/or other information
(designators) needed by the CPU to perform the
operation.

Before we discuss individual instruction types and
formats, let’s look at some of the types of computer
programs/software commonly used.

TYPES OF COMPUTER
PROGRAMS/SOFTWARE

A computer program is a sequence of instructions,
written in a specified way to perform a plan (an
algorithm) and/or routine. Programs are written to
manage a computer and its resources, solve a problem
or type of problem, and/or diagnose malfunctions in a
computer. Programs include hardwired (read-only)
programs stored in a read-only memory (ROM) or
programmable ROM (PROM). They also include

8-2

programs that were written by programmers and can
be altered (authorized software changes) as required.
Hardwired programs are installed at the factory and
cannot be altered except by replacing the ROM or
reprogramming the PROM. Other programs are
generally stored on magnetic media (tape or disk) or on
optical compact disk (CD) ROM. These programs are
loaded into computer memory when needed.

You will encounter several general types of
programs. These include operating systems,
application/operational programs, and utility programs
(utilities). Programs may be written to run on a
stand-alone computer or interactively on two or more
computers connected together.

Operating Systems

An operating system is a collection of many
programs used by a computer to manage its own
resources and operations. The types of operating
systems include the following:

Single tasking

Multitasking

Real-time

Local-area network

Wide-area network

l Virtual (VOS)

l Disk (DOS)

Operating systems provide the link between the
hardware and its user as well as enabling the execution
of operational and/or application programs designed for
specific use.

Application/Operational Programs

Programs for the computers you maintain will be
used in tactical, tactical support, and nontactical
platforms. These programs are designed to solve
specific types of problems. They are commonly called
application programs, operational programs, or
processing programs. The programs used in tactical or
tactical support platforms, such as CDS/NTDS or
ASWOCs, are generally called operational programs.
The programs used with the SNAP systems (I and II)
are, as a rule, called application programs. Programs
available commercially that are designed to solve
specific classes of problems are often called packaged
software or off-the-shelf software. These include word
processing, database management, graphics,
spreadsheet, and desktop publishing programs to name
a few.

Utility Programs

Utility programs include general routines or
diagnostics run by the computer to test other
equipments or itself. A programmed operational and
functional appraisal (POFA) to test magnetic tape units
and a diagnostic test for a computer are examples.
Utilities can be run as stand-alone programs, such as
microcomputer diagnostics, a maintenance test
program (MTP), a POFA, and a standard test program
(STP) using a standard test driver (STD). They can also
be run as part of an operating system (if memory
permits) or as online diagnostic tests such as on a SNAP
system or NTDS. Utility programs also include
programs and routines to perform general routine tasks,
such as disk/tape copy and print. These, too, can be
stand-alone programs or they maybe included with the
operating system or other programs.

LEVELS OF INSTRUCTIONS

The CPU executes machine instructions, which
manipulate the data within the functional units of the
computer. In early computers, only one level of
machine instructions was used. In modern computers,
this only remains true in microprocessors and most

microcomputers. For most computers, there are now
two levels of machine instructions: microinstruction
and macroinstructions. In larger microprocessor-
based devices (minicomputers and mainframes), each
microinstruction is in effect a predetermined and
installed set of microinstruction.

The particular device’s instruction set is made up
of the highest levels (micro or macro) of machine
instructions. The instruction set is the complete set of
individual operations that can be executed or performed
by the particular microprocessor or computer. In
microprocessors, microcomputers, and microprocessor
controlled peripherals, the machine instructions are
referred to as microinstruction, and the microprocessor
executes them to perform the desired operations.

In mini and mainframe computers, the machine
instructions are actually macroinstructions. Once
again, a microinstruction is a predetermined or preset
sequence of microinstruction. Since most of the larger
devices are microprocessor driven, it is necessary to
break down the larger microinstruction into a series of
smaller events that a microprocessor can handle. The
microinstruction that make up the macroinstructions
do not normally concern the computer programmer who
uses only the microinstruction set. The
microinstruction are usually stored in some form of
local memory, accessible only to the microprocessor
translating and executing the macroinstructions.

Instruction sets differ to some degree between
computers, particularly between those of different
manufacturers, types, and generations of computers.
The actual number of instructions in an instruction set
has a direct affect on the overall operation of the device.
Computers with small instruction sets are easier to
understand, and this simplifies both programming and
maintenance. A large instruction set tends to support
more specialized activities or functions that make the
overall operation of the device more efficient or more
tailored to the user’s requirements. An example of a
large instruction set is one used on large mainframes
aboard a ship.

TYPES OF INSTRUCTIONS

The flow of data in a computer is the result of
instruction execution. Data can be exchanged between
registers. It can be moved from one register to another.
It can be moved from a register to a memory location
or vice versa. Arithmetic instructions can be performed
using the contents of registers and memory locations.
Logical instructions can be used to isolate bits in

8-3

registers and memory locations. How machine
instructions within an instruction set are classified differ
by computer type and manufacturer.

Instructions Classified by Function

Instructions can be classified in general terms by
the type of operation they peform—data movement,
transfer of control or program sequencing, arithmetic,
and logical.

MOVEMENT INSTRUCTIONS.— Movement
instructions literally move the data in some way. They
include internal, external, and data assignment
instructions.

Internal Instructions.—Internal instructions
move the data within the confines of the computer.
They include the following examples:

●

●

●

Load —Load the A register with the contents
specified by the operand

Move (transfer) —Move the
register to another register

Store —Store the contents of
specified memory address

contents of one

a register into a

External Instructions.—Instructions dedicated to
I/O are external instructions. They include inputting
data from a peripheral device, such as a magnetic tape
unit or outputting data to a peripheral, such as a printer.

Data Assignment (Special-Purpose)
Instructions.—Data assignment instructions include
those that set or clear status indicating bits that are
normally held in an active status or flag register. Some
examples of active status registers include state
indicators, upper/lower control indicator of half-word
instructions, interrupt lockouts, memory lockout
inhibit, bootstrap mode, fixed point overflow, and
compare designators. Some examples of flag bits are
equal to zero, sign (+ or –), carry, and parity (odd or
even).

TRANSFER OF CONTROL OR PROGRAM
SEQUENCING CONTROL INSTRUCTIONS.—
Transfer of control or program sequencing control
instructions enable the programmer to change the
sequence in which instructions are executed by
branching to another area of a program. They also
include instructions for a subroutine to perform a
function.

Branching Instructions.— Branching instructions
make it possible to change the sequence in which the

computer peforms instructions. An unconditional
branching instruction always causes a jump to a new
area of memory. An example is a jump (JMP)
instruction. Branching instructions often use a modifier
in the instruction to establish a condition to be met.
These types of branching instructions are called
conditional branching instructions. A conditional
branching instruction causes a jump to a new area of
memory only when a specific condition is met, such as
IF A = 0 JUMP TO.... A conditional branching
instruction may also rely on the setting of a switch on
the computer’s controlling device to be included with
the instruction, such as IF JUMP 1 SWITCH IS SET
JMP TO

Subroutine.— A subroutine may include a function
that is routinely repeated, such as incrementing or
decrementing an index register or a short multiply
routine when no multiply instruction exists. Some
functions performed in a subroutine may include stack
pointer management and data buffering algorithms
such as last-in, first-out (LIFO) and first-in, first-out
(FIFO) methods.

ARITHMETIC INSTRUCTIONS.— Arithmetic
instructions include add, subtract, multiply, divide,
shift, increment, decrement, clear, and negation
instructions. Depending on the design of the computer,
absolute numbers are involved in arithmetic
calculations. Also depending on the design, math pac
and numeric data coprocessor are used in some
computers in addition to the normal arithmetic
instructions available. They execute the arithmetic
instructions the CPU’s ALU cannot and are still
controlled by the CPU’s program control.

LOGICAL INSTRUCTIONS.— Logical in-
structions include and, or, not, exclusive or/nor, com-
pares, and shift instructions. They are often used in
computers with multiply or divide instructions, in
calculations to isolate bits. They also include compare
type instructions. Compare type instructions are
greater than (>), less than (<), equal to (=), not equal to
(<>), check for positive, and check for negative.

Instructions Classified by Their Action on
Operands

Instructions may also be classified by their action
on an operand. They may read, store, or replace an
operand. For example, ADD LOGICAL PRODUCT is
classified as a read instruction; STORE LOGICAL
PRODUCT is classified as a store instruction; and
REPLACE SELECTIVE CLEAR is classified as a

8-4

replace instruction. Figure 8-1 illustrates instructions
with their classification (read (R), store (S), or replace
(RP)).

l Read —Read instructions acquire an operand
from main memory.

l Store —Store instructions process an operand
already acquired and store it in main memory.

l Replace —Replace instructions acquire and
process an operand and then store it in memory.

INSTRUCTION LANGUAGE
INTERPRETATION

The instruction format provides the means to
customize each instruction. A list of instructions with
their formats, symbols, and meanings provides you a
means to interpret what an instruction will ultimately
accomplish. This is a very useful troubleshooting
tool to help isolate a specific malfunction. The in-
structions differ between types of computers. Take a

Figure 8-1.—Examples of computer instructions.

8-5

few minutes to study figures 8-2, A and 8-2, B. Figure the op (function) in hex or octal, operation or name,
8-2, A shows two examples of instructions used in mnemonic, and description or Boolean/ arithmetic
tactical data systems. Figure 8-2, B shows examples of operation; You will also notice the parts peculiar to a
instructions used on a typical general-purpose specific computer and its instructions. Among those
microcomputer. By looking at the information are addressing modes, status indicating registers,
provided about an instruction, you will be able to tell coding format, and soon.

Figure 8-2, A.—Examples of instruction interpretations for two mainframe computers.

8-6

Figure 8-2, B.—An example of instructions for a typical microcomputer.

INSTRUCTION FORMATS normally defines the location that contains the operand

Instruction formats vary between microprocessors
and minicomputers and mainframe computers. As the
machine instructions are generally longer in larger
computers with their larger memory words, the
instruction format or how the instruction is translated
differs. Each instruction is composed of fields. The
lengths of instructions and the lengths and positions of
the fields differ depending on the instruction and the
computer. An operation (function) code is part of all
instructions. How the remainder of the instruction is
translated and the names assigned to the parts vary.
Let’s take a look at two examples of computer
instruction formats, one for a microcomputer and one
for a mainframe. We begin with the op (function) code,
which is common to both; only the length differs.

A typical machine instruction begins with the
specification of an operation to be performed, the
operation (op) code. Refer back to figure 8-1. The op
code tells the computer/processor what basic operation
to perform. The op code, a part of every instruction, is
usually located at the beginning of each instruction
format. Following the op code is information, if
needed, to define the location of the data or the operand
on which the operation is to be performed. This
location in memory, called the operand address,

at the start of the operation (the source), or that will
contain the modified operand upon completion of the
operation (the destination).

The remainder of the instruction and how it is
structured differs from one computer or computer type
to another. The designators in each field and the
positions of the fields within the instruction determine
how the instruction will affect the operand, registers,
memory, and general flow of data in and out of the
computer. We discuss the fields and the designators as
we discuss the two instruction formats.

Microcomputer Instruction Formats

A basic 16-bit microinstruction is divided into a
number of separate fields. Refer to figure 8-3 as a
reference. You’ll notice the lengths of the fields vary.

The op code is located in the most significant bits
(215 through 213). B (bit 212) tells the computer to use
all 16 bits as a word or divide the 16 bits into 8-bit bytes.

Figure 8-3.—Example of microinstruction format.

8-7

D (bits 29 through 26) is a code identifying the destina-
tion portion of the instruction. S (bits 23 through 2°)
identifies the source portion. TD (bits 211 and 210)
and TS (bits 25 and 24) are bits in the instruction word
that identify the type of addressing mode being used to
locate the destination and source addresses.

As shown in figure 8-4, two or three memory words
are required for some instructions depending on the
addressing mode indicated by TD and Ts. Addressing
modes are discussed in the next section.
Microcomputers may have more than one instruction
format for the one word instructions. The format
depends on the type of instruction being used.

Mainframe Computer Instruction Formats

The instruction formats for large mainframe
computers vary greatly between types, generations, and
manufacturers of computers. For our example, we
selected the instruction format for CPU instructions of
a mainframe computer with 32-bit computer
instructions. These instructions can have up to seven
basic formats designated I, II, III, IV-A, IV-B, IV-C and
V. The majority of these instructions are full memory
word (32-bit) instructions. Only formats IV-A, IV-B,

Figure 8-4.—Microcomputer instruction formats with two
and three memory words.

and IV-C are upper or lower half-word (16-bit)
instructions.

The instructions are divided into a number of single
or multibit fields that each perform a specific function
during instruction execution. Two fields called the
function code (f) and the accumulator or index (a)
designator fields are consistent throughout all the
formats. The f field is the 6-bit function code (op code)
and the a field is the 3-bit accumulator register
designator field.

The function code (f) defines the complete
operation to be performed or it may be used in
conjunction with other fields called subfunction
designators to define an operation. The accumulator
register designator (a) field is used to identify the
particular accumulator (0-7), index (0-7), or stack
pointer register (0-7) needed for the operation. The
formats and instruction fields are described in the
following paragraphs.

l Formats I, II, and III —These three formats (fig.
8-5) make up the majority of instructions in the example
computer’s repertoire of instructions. Format I
instructions perform the basic load, store, replace, and
simple mathematical operations for the computer.
Format II instructions are concerned with single
precision mathematics, interrupt, and I/O commands.
Format 111 instructions are used for program sequence
control (jumps, return jumps, and switch controlled or
manual jumps).

The three formats have many fields in common.
The nine most significant bits (231 through 223) are
made up of the f and a fields. Only bits 222 through 220

differ between the three formats. In format I, the 3-bit
field is called the k field or operand interpretation
designator. This field is used primarily during
mathematical operations. In format II instructions, the
three bits become a subfunction code (f2). And in
format III instructions, the three bits become a two-bit
subfunction code (f3) and a single-bit k code that is
always ZERO for format III instructions.

NOTE: Subfunction codes, f2 through f6, are used
as part of the op code unless otherwise specified. A
subfunction code of two bits has a maximum value of
3 (112). A subfunction code of three bits has a
maximum value of 7 (1112). For example, the format
II op code 07 could have a subfunction 7 and format III
op code 53 could have a subfunction code of 3.

The remainder of the instruction, bits 219 through
20, is the same for all three formats. There is a 3-bit
index register designator code (b), a single-bit indirect

8-8

Figure 8-5.—Illustrations of instruction word formats I, II, and III.

addressing designator (i), a 3-bit base designator or are combined to define one of the following: a 16-bit
special selection code (s), and a 13-bit address dis- operand, a constant that can be modified by an index, a
placement or operand designator (y). The b code (219 jump address, an indirect address, or a string of
through 217) is used to identify the index register (0-7) identifier bits.

being used for indexing or operand address . Formats IV-A and IV-B —The formats are for
modification. The i code (216) is a ZERO when in 16-bit or half-word instructions. These instructions
direct addressing mode and a ONE when in indirect reside in the upper or lower half-word of a memory
addressing mode. The s and y codes (215 through 20) location. They are normally stored two to a memory

8-9

Figure 8-6.—Illustration of instruction word format IV-A.

word. First the computer executes the upper half-word
instruction then the lower. If only one of these format
instructions is to be stored in a memory word, then it is
stored in the upper half-word location. An active status
register (ASR) bit (215) is used to keep track of
upper/lower half instruction execution.

Format IV-A instructions are used for a variety of
computer operations that do not require an operand or
operand address to be part of the instruction. These
operations include but are not limited to mathematics
and comparison operations, IOC commands, task and
executive state operations, and real-time or monitor
clock operations. The format IV-A instruction (fig.
8-6) is made up of an f field, a field, f4 field, an index
designator (b) field, and i field, which is unused unless
specified. The only field we have not covered is the f4

field, a 3-bit subfunction code. This field can be used
to identify code memory registers (CMR) for CMR
operations.

Format IV-B instructions are used to shift data
stored in an accumulator. The accumulator designator
specifies an accumulator in control memory. The shift
count designator specifies a shift count or a source of a
shift count. Instruction format IV-B (fig. 8-7) is made
up of an f field, an a field, and a shift designator (m)
field.

. Format IV-C —Format IV-C instructions (fig
8-8) are used for individual bit operations. These
operations include setting, clearing, or testing an
individual bit of a specified accumulator register. The
5-bit n field provides the bit position pointer to specify
the register bit to be operated on.

. Format V —Format V instructions are full-word
format instructions (fig. 8-9) used for single and
double-precision floating-point math operations and
other large magnitude number functions. In this format
the f, f5, and f6 fields are used to define the specific
operation to take place. The a and b fields are used for
accumulator and index register definition. The m field
provides decimal point positioning values for floating
point operations.

INSTRUCTION OPERAND ADDRESSING

The types of operand addressing usually available
are direct, extended, immediate, implicit, indexed,
indirect, and relative.

Direct Operand Addressing

In direct operand addressing, the address of the
operand’s memory location is contained in the
instruction. Figure 8-10 shows an example of direct
addressing format.

Figure 8-7.—Illustration of instruction word format IV-B. Figure 8-8.—Illustration of instruction word format IV-C.

8-10

Figure 8-9.—Illustration of instruction word format V.

Extended Operand Addressing

Extended addressing. is used when an address of a
memory location is too large to fit in one word. For
example, on a computer with an 8-bit word (1 byte),
only memory locations with addresses within the range
of 0 through 255 can be addressed in 1 byte. To enable
the computer to address memory locations with larger
addresses, two bytes can be interpreted as one address.
See figure 8-11.

Immediate Operand Addressing

When the immediate format is used, the operand
itself is contained in the instruction. In this instruction
format, the destination is a general-purpose register
defined by the destination register code (fields or
designators) located in the instruction. Figure 8-12 is
an example of immediate addressing.

Implicit (Implied) Operand Addressing

In implicit (implied) operand addressing, the
operand location is implied by the op (function) code of
the instruction (fig. 8-13). For example, the op code
CLA could mean “clear the accumulator.” No address
needs to be specified because the op code contains all
the information needed.

Indexed Operand Addressing

In the indexed mode, the operand address must be
generated when the instruction is being prepared for
execution. This is done by adding the address given in
the instruction to a value contained in a specified
register. The register to be used is specified along with
the operand address in the instruction. See figure 8-14.
In this example, the parentheses are used to tell that the
index mode is needed. The CPU will add the operand
whose address is ADDR1 + the value in register 1, R1,

Figure 8-10.—Example of direct addressing format.

Figure 8-11.—Example of extended addressing format.

Figure 8-12.—Example of immediate addressing format.

Figure 8-13.—Example of implicit (implied) addressing
format.

Figure 8-14.—Example of indexed addressing.

8-11

to the contents of register 2, R2. By changing the value
in R1, different operands may be addressed. This is
particularly useful for addressing memory locations in
arrays. Indexing is a very useful troubleshooting tool.
A short routine can be written to form a program loop
to isolate on a specific malfunction.

On some computers, a CPU register is dedicated to
this indexing function. In those cases, it is called an
index register and is usually 3-bits or more depending
on the computer type. Some computers permit a
general-purpose register to be used as an index register.

Indirect Operand Addressing

Indirect addressing enables the operand address to
vary during program execution by specifying a location
in memory or a register in the instruction that tells where
the address will be stored. See figure 8-15. In this
example, the braces are used to tell that register 2 has
been specified to hold the operand address. This means
the contents of the main memory location whose
address is contained in R2 are added to the contents of
R1. Like the indexed mode of addressing, the indirect
mode of addressing offers flexibility and is useful in
addressing an array of data. Because the actual address
pointing to an array can be stored separately from the
program in memory, a large number of array pointers
can be used.

Relative Operand Addressing

In many computers, particularly those with
multiprogramming capabilities, a separate set of
registers called base registers is used to define the start
of particular blocks or segments of memory. Each
block of memory could contain a separate application
program. The contents of a base register is called the
base address. Any execution of instructions or
referencing of operands within the block of memory
defined by the base requires that an offset or relative
address be used. The offset is added to the base during
instruction execution to allow reference of the correct
instruction or operand address.

INSTRUCTION SIZE

Each address of memory (main or ROM) contains
a fixed number of binary positions or bits. The number

Figure 8-15.—Example of indirect addressing.

of bits stored at a single address varies among types and
generations of computers. For example, some store 8
bits (1 byte) at each location; others store 16, 32, or more
bits at each location. The size of each memory location
or memory word has a direct effect on the execution of
machine instructions.

Basic instructions deal with full word exchanges
as the register size is usually the same as the memory
word size. In most computers, particularly those with
large memory words, the capability exists to transfer
less than a full memory word of information between
memory and the applicable register. This allows
memory words and registers to be further divided into
economically sired bit groups for the most efficient use
of memory for information storage and handling. For
example, it is preferable to store two 8-bit characters in
one 16-bit memory location than to waste an extra
16-bit location for the second character. Let’s examine
some of the various instruction sizes.

Full- or Single-Word Instructions

A full- or single-word instruction simply uses all
the data contained in the instruction word to execute the
instruction regardless of the size: 8-bit, 16-bit, and so
on. Refer back to figures 8-3 and 8-5 for examples of
full- or single-word instructions, 16-bit and 32-bit.

Half-Word Instructions

Half-word (upper or lower half) instructions consist
of one-half of the normal instruction word size. The
half-word instructions are executed by acquiring the
complete normal instruction word, consisting of the
half-word instruction to be executed and the next
sequential instruction. After the first half-word
instruction is executed, it is followed by the execution
of the next sequential half-word instruction. If only one
half-word instruction is used, it is usually located in the
upper half of the instruction word with all zeros in the
lower half of the instruction word. Refer back to figures
8-6 and 8-7 for examples of a half-word instruction.

Character-Addressable Instructions

In computers with word lengths greater than 8 bits,
character-addressable instructions allow specified bit
fields (called characters) of a word to be processed by
the instruction. This is done in lieu of processing a
whole-, half-, or quarter-word operand. Character
addressing is permitted only when the instruction is
executed in the indirect address mode. The particular
operand bit field to be acquired is specified by the

8-12

indirect word addressed by the instruction. In
computers with an 8-bit word, no special instruction is
needed because each character has its own address.

Double-Length Instructions

Double-length instructions consist of two adjacent
words stored in memory.

Multiple-Word Instructions

Multiple-word instructions can be used to process
two or more sequential words from memory. This
concept is commonly used in microcomputers where
the instruction word is 16 bits and the memory word
size is 8 bits (a byte). In this case two or more sequential
bytes from memory are transferred into two or more
16-bit registers for processing; or multiple word store
instructions are used to process 16-bit registers into
sequential bytes in memory (two bytes for each
register). Refer back to figure 8-4 for an example of a
multiple-word instruction format.

TOPIC 2—MAN/MACHINE
INTERFACES

To use or maintain a computer, you must be able to
control the computer’s operation through some form of
a man/machine interface. The man/machine interface
is accomplished by the CPU and will vary with the type
of computer. However, there are no major differences
in the functions performed by the interfaces. You
studied the controlling devices in chapter 3. The
controlling devices allow you to interface with the
computer. The methods are discussed in this topic.

The controlling devices used by operator and
maintenance personnel vary with different types and
generations of computers. In some cases the particular
devices used are the same for both general system
operation and the more specific maintenance functions.
In many cases the man/machine interfaces have evolved
from large panels containing many pushbutton/
indicators, and pushbutton/toggle switches, and
switches (fig. 8-16) on a maintenance panel to more

Figure 8-16.—Pushbutton/indicators, push button/toggle switches, and switches on a maintenance panel.

8-13

sophisticated microprocessor controlled assemblies using the functions of the controlling devices. The data
containing display panels and data entry keyboards (fig. display capability is used to provide hardware status and
8-17) on a display control unit (DCU). other system description data to you. The data display

In all cases, the man/machine interface provides capability can also allow you to react in some cases
you with some form of data entry and data display using menus to choose various operations. The
capability. The data entry function is used to enter man/machine interface is the primary path you use
commands or set parameters for computer operations, when requesting information on computer faults and for
status, and test activities. The data entry can be made the computer to display the requested data.

Figure 8-17.—Display panels and data entry keyboards on a display control unit (DCU).

8-14

MAN/MACHINE OPERATING MODES

Controlling the tempo of instructions through
man/machine interfaces can be executed in several
modes of operation. The two most commonly
encountered operating modes are run and stop. Other
modes are step, sequence, and phase.

Run Mode

When the computer is in run mode, it continually
executes instructions one after another as directed by its
logic circuits and software. The speed of execution is
determined by the timing circuits or clock of the CPU.

Stop Mode

When the computer is stopped, it is not executing
an instruction and will not execute an instruction until
directed by an operator action (START or RUN
pushbutton with the instruction address in the program
counter). A running computer can be stopped by
manual action (STOP pushbutton) or by execution of a
STOP instruction under program control. Many
microcomputers and embedded microprocessors do not
have or do not use their STOP mode except from the
device maintenance panel. During normal operation,
they are designed to run continually from firmware
programs once the equipment they are in is powered up.
The only way to stop a microcomputer is to power it
down.

Step Mode

Most computers or microprocessor controlled
peripherals with maintenance panels offer the
technician other modes of operations, specifically some
form of instruction step. In the instruction step mode,
individual instructions are executed one at a time as
directed by the technician (pushbutton or toggle switch
action) or in some machines at a slower than normal rate
as determined by a manually adjustable low-speed
oscillator. The contents of the computer registers and
memory locations can be tested by the technician at the
end of each instruction to verify proper operation or to
aid in troubleshooting the computer. In newer
computers, instruction step may be divided into two
levels: macro step or micro step.

MACRO STEP.— A macro step allows the
execution of a single macroinstruction. Those
computers using macroinstructions composed of a
series of micro instructions may give you the option to

instruction step at either level, macro by macro or micro
by micro within an individual microinstruction.

MICRO STEP.— A micro step allows the
execution of a single microinstruction.

Sequence Mode

Sequence mode allows the execution of one
sequence of an instruction at a time. Each operation of
an instruction has an established set of sequences to
complete the instruction. This enables you to execute
one sequence of an instruction at a time. This is useful
for detailed troubleshooting of an instruction.

Phase Mode

Phase mode allows the execution of one phase of
an instruction at a time. If a computer has six main
timing phases, you can execute one phase at a time. You
can see what the instruction has accomplished at the end
of each phase. This is also an aid for detailed
troubleshooting.

MAN/MACHINE OPERATIONS

Interface capabilities available vary from computer
to computer. Micros rely on keyboards and mouse
devices to interface; consult your computer’s manuals
for detailed operations. Because more hardware is used
on mini and mainframe computers, their interface
capabilities provide a greater range to set parameters
and control the operations of the computer more closely.
This is particularly useful in the preventive and
corrective maintenance aspects of your job. Without
going into detail, the following functions are commonly
available to the technician through the man/machine
interface operating modes. Some are self-explanatory;
we describe their basic operations.

l Master Clear —Clears all I/O and CPU registers
and will stop the computer if it is in the run mode

l Start/Run —Starts the function determined by
the operating mode(s)

l Stop (computer control) —Causes computer
operations to stop

l Stop (program control) —Causes corresponding
stops to occur under program control

l Jump —Causes corresponding jump to occur
under program control

l Bootstrap —Addresses NDRO (ROM)
depending on position of AUTO RECovery or
MANUAL switches

8-15

. Real-time clock —Allows real-time clock to be
updated internally or externally

Consult your technical manuals for exact
operations used in the different computer operating
modes.

MAN/MACHINE INTERFACE FUNCTIONS

The man/machine interface is used to perform a
variety of general functions. These functions include,
but are not limited, to the following:

●

o

●

●

●

●

●

●

●

Configure the computer/processor system

Apply power

Enter data and display data

Execute internal diagnostics

Execute bootstrap

Initiate operational programs

Execute auto restart operations

Execute diagnostics

Patch or revise software

Not every man/machine interface function applies
to every type of computer; therefore, we look at the
three general types of computers (microcomputers,
minicomputers, and mainframes) and give an overview
of the man/machine interfaces used for each particular
type as it applies to you. We do not address
microprocessors as such. We consider them as
replaceable or repairable components of the larger
device. We also do not discuss peripheral devices used
for system control and configuration operations. The
following discussion covers only those man/machine
interface devices considered as components or
assemblies of the particular type of computer. With all
types of computers, consult the appropriate
documentation for your system to ensure proper
operation. This last statement cannot be over
emphasized.

Microcomputers

The man/machine interfaces used with the
microcomputers you maintain will be system oriented.
Let’s take a look at the options available to you for
microcomputers.

CONFIGURE THE PROCESSOR.—
Microcomputer systems are designed to be flexible in

their configuration. You can easily modify most
desktop systems to incorporate additional disk units
(hard or floppy), expanded memory, other components,
as well as specific operator requirements. The
ROM-based firmware that the system uses for booting
the operating system as well as other system software
must be configured for the current system
interconnection scheme.

Three methods are commonly used to inform the
processor of the system configuration. They are DIP
switches, jumpers, and battery protected storage of
configuration data.

DIP Switches.—Dual-inline package (DIP)
switches are made to be instilled into integrated circuit
sockets or board connections. Each switch in the
package (fig. 8-18) normally indicates one of two
conditions by its ON/OFF status. The board mounted
DIP switches are designed so you can manually position
them during component installation, removal, or initial
system configuration to inform the processor of the
availability of the particular components as well as the
requirements of the system operators. They affect such
operations as video display (color and resolution) and
port(s) selections. Individual switches or combinations
of two or three switches are used to specify a variety of
configuration options.

Jumpers. —In some units, jumpers are used to
make additional configuration changes. Jumpers (fig.
8-19) can be likened to dual-inline package (DIP)

Figure 8-18.—DIP switches.

8-16

Figure 8-19.—Jumper connections.

switches except that you must physically remove and
reinsert them. A jumper connector is designed for easy
removal and reinsertion. They are permanent unless a
configuration change is required. The jumper
connector consists of a receptacle and plug
arrangement. The receptacle is normally mounted
permanently on the pcb’s and/or backplane/
motherboard inside the micro’s chassis. A plug (with
or without a cable) makes the appropriate connection.
It disables, enables, selects, and expands. Jumpers
define the configuration of each pcb, which will
eventually affect operations. Some of the functions
affected include mode of operation (fast or normal),
clock speed, wait states, and I/O connections. Like DIP
switches, jumpers are designed so you can manually
position them during component installation, removal,
or initial system configuration to inform the processor
of the availability of the particular components, as well
as the requirements of the system operators. Individual
jumpers or combinations of two or three jumpers are
used to specify a variety of configuration options.

Battery Protected Storage.— Many newer
microcomputers have a hardware setup/configuration
program stored as firmware. It has the capability to
display system configuration data on the display screen
and to update system configuration data via the
keyboard. The configuration data is stored in a random
access memory (RAM) protected by a rechargeable
battery so the data is retained for long time periods when
the micro itself is powered down. The battery is located
on the backplane/motherboard.

Configuration Options.— Both DIP switches and
battery protected storage provide the same basic

configuration data to the micro. System setup/
configuration options include the following:

l

l

l

l

l

l

l

l

Date/time data (battery protected storage only)

Base and expansion memory size

Floppy disk drive identifiers (A, B, C or 0, 1, 2)

Storage capabilities (number of Kbytes of
storage per drive)

Hard drive data

Boot drive identifier

Type of video display

Video refresh time period

APPLY POWER.— Power is applied to the
microcomputer with a simple ON/OFF switch usually
mounted on the back of the desktop computer chassis
(fig. 8-20). A separate monitor requires its own power
switch. Portable micros usually have fixed time period
rechargeable batteries (6, 8, or 12 hours) with a normal
ac power option. Presence of system power is indicated
by single indicator lamps on the front of the chassis and
the monitor mounting. Sometimes in the same area as
the ON/OFF switch, a selectable switch (fig. 8-20)
called a voltage or line select switch allows the
microcomputer to operate on voltages in the range of
100 to 130 volts or 200 to 230 volts.

USE CONTROLS, DATA ENTRY, AND
DATA DISPLAY.— Micros, either portable or desktop

Figure 8-20.—Desktop computer back panel.

8-17

Figure 8-21.—A typical microcomputer with data entry and
display devices.

(fig. 8-21), combine both maintenance and operational
functions in the same data entry and display devices.
Virtually all operator/technician commands are passed
from the keyboard to the microprocessor. With the
exception of a few simple indicator lamps, virtually all
data is displayed on the monitor or display screen.
Together the keyboard and monitor allow you to run
software programs, perform tests, and view results. The
keyboard and monitor on a microcomputer limit you to
only data entry and display functions; there are no
controls for power, cooling, or battle short conditions.
With microcomputers, you can also use a mouse with
the keyboard to interface with the computer.

EXECUTE INTERNAL DIAGNOSTICS.— As
part of the power on sequence, microcomputers usually

Figure 8-22.—Example of an error message information.

run a series of internal diagnostic programs. These are
stored as firmware and take several seconds when the
computer is turned ON. If everything is correct, the disk
operating system (DOS) will load and the appropriate
DOS displays will display. If there is a computer failure
of any test, the computer ties to display an error
message (fig. 8-22) on the display/monitor screen.
Error messages identify the likely cause of the problem
and possible solutions. Follow the recommended
solutions closely and document the error message. If
no error message is displayed or if the recommended
solution does not fix the problem, more troubleshooting
will be required. Most manuals will have a section that
provides a detailed troubleshooting guide. The
troubleshooting guide includes diagnostics that can be
run from user selected tests available from the boot
ROM program or disk based diagnostics.

Many micros are equipped with a more
comprehensive set of internal diagnostics called
ROM-based diagnostics, stored as firmware. These
can be selected and executed using a special firmware
controlled display. Some of these diagnostics are
executed as part of the power on sequence, while
others can only be executed from the display screen
menu.

These diagnostics do not require any program
loading. They are resident within the computer and
accessible through a menu driven display (fig. 8-23).
This enables you to select the desired diagnostic
procedure and observe test status and error in-
dications.

Figure 8-23.—Example of a menu driven display.

8-18

The ROM-based diagnostics menu provides you
access to the following types of tests, again depending
on the type of computer and the system configuration:
disk read, keyboard, base memory, expansion memory,
printer, and power on.

Additional board mounted diagnostic
light-emitting diode (LED) indicators (fig. 8-24) are
normally provided on the computer backplane and I/O
logic circuit modules. This simplifies the diagnostic
software and aids in fault isolation and identification.
The LEDs on the backplane/motherboard for power
remain on as long as the microcomputer is on. The
LEDs on the I/O pcb extinguish as each test is
successfully completed, except the READY LED. It
will extinguish after an operating system is read from
disk.

The features of ROM-based diagnostics of micros
differ based on manufacturer and system configuration.
They are normally designed to provide at least 90%

Figure 8-24.—Examples of LED indicators.

resolution on detected faults to a single large scale
integration (LSI) circuit or supporting integrated
circuits. RAM and ROM errors are usually identifiable
to the specific IC chip. The ROM-based diagnostics are
designed to verify and fault isolate enough of the
computer’s logic to allow for loading and executing
more comprehensive diagnostic programs stored on
disk (floppy or hard disks).

EXECUTE BOOTSTRAP.— Micros are
normally designed to boot or initially load the disk
operating system (DOS) program from either the
installed floppy or hard disk assemblies, based on the
system configuration. The operating system program
provides for operator control of the loading and
executing of application programs used within the
microcomputer system.

There are two ways to boot a micro. Firmware
stored in PROM or ROM will automatically reference
the configured disk for the operating system program
as part of the power on sequence. Turn the micro ON
and it automatically looks for the operating system
program on the configured disk. If it finds it, the
operating system automatically loads. If it does not find
it, you will need to ensure the disks are setup correctly
and depress a combination of keys to cause the system
to boot.

INITIATE OPERATIONAL PROGRAMS.—
For microcomputers, once the microcomputer has been
booted, how the computer is configured will dictate
how to initiate the operational program, the software, to
be used.

EXECUTE AUTO RESTART OPERA-
TIONS.— There is also a particular combination of
keyboard keys (such as Ctrl, Alt, and Del) that will
cause the operating system program to reboot and
restart. This can be used in the event of a software
failure. You can also reboot by turning the computer
OFF and then ON.

EXECUTE DIAGNOSTICS.— You can load and
execute disk based diagnostics using DOS command
structures or a diagnostic monitor program. To execute
these, you usually load the programs by a different
power-up and boot sequence. The diagnostic monitor
program displays a test selection menu similar to the
internal diagnostic menu. Because these diagnostics
are more comprehensive than the ROM-based
diagnostics, you will be given more information on the
menu than you are with the ROM driven display. The
test selection menu provides for diagnostic selection,
test status, and error indications. The selection, test

8-19

status, and error indications are displayed on the
microcomputer’s monitor (fig. 8-25).

PATCH OR REVISE SOFTWARE.— While
microcomputers have the same basic capabilities as
larger computers, they are not designed to allow for the
manual insertion and revision of machine code. At this
time, revisions to operating system, application, or
diagnostic software are provided by the system or
software manufacturer or designer.

Minicomputers

The man/machine interfaces of the minicomputers
you will maintain are more machine oriented and less
system oriented.

CONFIGURE THE COMPUTER SYS-
TEM.— Minicomputers are primarily factory

configured. There are a number of options you can
incorporate by simply changing a module in the
installed computer. As far as the computer itself, ensure
that the controls and switches are set up properly for the
intended operations. DIP switches and jumpers are also
used in some minicomputers to meet the required
interconnection scheme for the current system. In
addition, make sure any peripherals or other equipments
are configured correctly to ensure correct operation.

APPLY POWER.— Applying power to
militarized minicomputers is somewhat more
complicated than with commercially available micros.
There can be a number of switches to power up the
computer (fig. 8-26). Usually there is a remote panel
that supplies power. Then at the unit itself there maybe
a number of switches. Some use a circuit breaker that
must be on before any of the other power switches will
operate. Once the circuit breaker has been turned on,

Figure 8-25.—Examples of diagnostic selection, test status, and error indication displays.

8-20

Figure 8-26.—Power up switches located on a maintenance control panel.

an ac power switch is activated to apply ac power to the have two panels, others one panel. When two are used,
computer. The circuit breaker will kick OFF in the
event the computer power supplies draw excessive
current.

The ac switch allows ac voltage to be fed to the
blower fans and dc power supply. Indicators, usually
one for PRIMARY and one for LOGIC, show the
presence of stable dc power when illuminated. Some
minicomputers will have a 4-digit time meter to record
the accumulated hours that logic power has been
applied.

Some minicomputers are equipped with a battle
short switch to allow the computer to run even when
the temperature exceeds the normal allowable operating
temperature established by the manufacturer. An
audible alarm and/or indicators can also be used to
indicate excessive temperature.

USE CONTROLS, DATA ENTRY, AND DATA
DISPLAY.— The controls, data entry, and displays
used on minicomputers vary. Some minicomputers

one panel is used for control and the other for
maintenance. When one panel is used, the control and
maintenance functions are located on the same panel.
Refer again to figure 8-26. The panels on some
minicomputers can be likened to the keyboard of a
microcomputer; they deal primarily with the operating
system and software programs. But with some
minicomputers, you have more options. They include
controls and indicators that deal with power and
temperature. These two conditions were included in the
apply power man/machine interface.

In addition to a number of control switches and
indicator lamps, some minicomputers use a keyboard
for data entry and numeric displays to show the contents
of registers or display status. This is also illustrated in
figure 8-26.

EXECUTE INTERNAL DIAGNOSTICS.—
Internal diagnostics are built-in tests (BITs). Firmware
and testing features are designed into the logic modules

8-21

Figure 8-27.—Example portion of a fault isolation table.

or an NDRO that can be executed at any time by the
technician or operator. The BIT is designed to test the
computer hardware (CPU, IOCs, and any optional
circuits) and return pass/fail results to the
operator/technician. Pass/fail results are displayed on
the control, data entry, and data display man/machine
interface. The BIT itself can consist of several levels of
tests and subtests controlled from the computer’s front
panel. Some internal diagnostics are designed to test all
or selected sections of the computer. Errors can be
displayed on the front panel using the data display
man/machine interface. The computer’s technical
manuals or a ready reference index located on the front
panel will enable you to decipher the error code. A fault
isolation table (FIT) lists the error code and the location
of the recommended module(s) that will correct the
problem. Figure 8-27 shows an example. On the pcb’s
in some minicomputers, LEDs are also used to aid in
fault isolation and identification.

EXECUTE BOOTSTRAP.— Minicomputers are
normally designed to boot or initially load the operating
system program using a hardwired module (NDRO)
located in the CPU. The NDRO is tailored at the factory
and will select a particular peripheral device (disk, tape,
and so forth) based on the position of the bootstrap
switch located on the computer’s controlling panel.
Figure 8-26 shows a maintenance control panel with a
bootstrap switch with two positions (1 or 2). The
bootstrap program allows a more comprehensive
program to be loaded from the selected peripheral into
main memory and be executed. NDROs are also
designed to perform a BIT, fault analysis program, or
load a failure analysis program. To execute bootstrap,
depress the run or load switch.

INITIATE OPERATIONAL PROGRAMS.—
After the computer is booted, the operational program

is loaded, initialized, and started. The operational
program is tailored to meet the command’s operational
requirements or application.

EXECUTE AUTO RESTART OPERA-
TIONS.— Auto restart operations are used when power
is restored after a power loss.

EXECUTE DIAGNOSTICS.— Execution of
external diagnostics can be loaded into the computer
and controlled using an external control device. They
can also be loaded into the computer from a peripheral
(disk or magnetic tape unit) but initiated and controlled
by the computer. These diagnostics are very thorough
and also offer the option of testing all or specific
sections of a computer. They are more comprehensive
than the BITs. Figure 8-28 shows the test results of an
external diagnostic test as they could be displayed on a
controlling monitor.

Figure 8-28.—Examples of test results from an external

8-22

PATCH OR REVISE SOFTWARE.—
Minicomputers have the option to allow you to
manually insert and make revisions to machine code or
insert revisions using external peripheral devices.
Patches or revisions to the software are written by
authorized personnel only. The patches or revisions are
entered using inspect and change routines or
equivalents using the controls, data entry, and data
display man/machine interface.

Mainframes

The mainframe computers used for tactical and
tactical support data systems use a number of units and
panels to control computer operations. Their
controlling devices offer more options to perform the
man/machine interface but their functions are the same.

CONFIGURE THE COMPUTER SYS-
TEM.— Mainframes are generally designed to work in
large systems. In addition to a number of peripherals,
they also work with major subsystems (display and
communications). The software is designed to manage
the computer and its resources based on the amount of
hardware. Most large mainframe computer systems use
two or more computers. This gives the system the
capability to run in the event one of the computers goes
down with hardware problems. Therefore, it is very
important that you understand and know how to
configure the system for full and reduced
configurations. You accomplish this by knowing the
capabilities and limitations of the software based on the
quantity of hardware for your system and by ensuring
all controls and switches on the computer(s),

switchboard panels, and display and communication
subsystems are correctly set.

APPLY POWER.— Applying power to
mainframes also requires more than just turning on the
ON/OFF switch. First, you must ensure there is power
to the remote panel. Then at the unit itself, usually a
circuit breaker must be applied, then blower and logic
power. Indicators are usually provided for blower and
logic to show there is stable power. Power to a
mainframe is critical and you must ensure there is a
stable power source. In addition to the circuit breaker
protection, interrupts are generated if there are
abnormal power fluctuations in which case the
computer will shut itself down. Mainframes also use a
4-digit time meter to record the accumulated hours that
logic power has been applied, except when there is a
time meter for each module unit. Some mainframes
have a separate power controlling device devoted
entirely for power. It is usually on the front of the unit.
Figure 8-29 is an example of a panel of such a device.
It also monitors the temperature of the computer
set.

Mainframes are also equipped with a battle short
switch (also indicated on figure 8-29) and an audible
alarm to allow the computer to run even when the
temperature exceeds the normal allowable operating
temperature established by the manufacturer and to
indicate excessive temperature in the modules.

USE CONTROLS, DATA ENTRY, AND DATA
DISPLAY.— Mainframes will use operator,
maintenance panels, and/or display control
consoles/units located near the unit. For our example,

Figure 8-29.—Example of the panel of a power controlling device.

8-23

we show a display control unit (DCU) in figure 8-30.
Remote units are also available to provide initial startup
just like the operator and display control units. Control,
data entry, and data display man/machine interfaces of
mainframes are your primary means of operating and
maintaining a mainframe computer. You can control all
operations from this man/machine interface. Newer
mainframes, in addition to controls, switches, and
pushbutton indicators, use displays and keyboards to
display status and to address the contents of registers.

EXECUTE INTERNAL DIAGNOSTICS.— On
mainframes, internal diagnostics are also available
using built-in tests (BITs) or tests available on an

NDRO. They are designed to test the computer
hardware (CPU, IOCs, and any optional circuits) and
return pass/fail results to the operator. Pass/fail results
are displayed on the control, data entry, and data display
man/machine interface shown on figure 8-30. Similar
to minicomputers, the BIT itself can consist of several
levels of tests and subtests controlled from the
computer’s front panel. Some internal diagnostics are
designed to test all or selected sections of the computer.
Errors can be displayed on the front panel using the data
display man/machine interface. The computer’s
technical manuals will enable you to decipher the error

Figure 8-30.—Example of a display control unit.

8-24

Figure 8-31.—Example of diagnostic error codes.

code. Figure 8-31 is an example. You can use this error is loaded, initialized, and started. The operational pro-
code for fault analysis. gram is tailored to meet the command’s operational require-

EXECUTE BOOTSTRAP.— Execute bootstrap ments or application. It is important that you know the

works in a manner similar to the function on software capabilities and limitations based on your
hardware. Be sure your system is configured correctly.minicomputers. An NDRO is used to perform this

function. The NDRO is tailored at the factory and will EXECUTE AUTO RESTART OPERA-
select a particular peripheral device (disk, tape, and so TIONS.— Auto restart operations are used when power
forth) based on the position of the bootstrap switches is restored after a power loss.
(0, 1, or 2) located on the computer’s controlling panel
(maintenance, control, display control, or remote unit).
To execute bootstrap, select bootstrap switch 0, 1, or 2
and depress the start switch (fig. 8-30). NDROs on
mainframes may also be designed to perform a variety
of tests or other functions that may be selected by use
of the DIP switches.

EXECUTE DIAGNOSTICS.— External diag-
nostics can be loaded into the computer, executed, and
controlled using an external control device. They can
also be loaded into the computer from a Peripheral (disk
or magnetic tape unit) but initiated and controlled by
the computer. These diagnostics are very thorough.
They offer the option of testing all or specific sections

INITIATE OPERATIONAL PROGRAMS.— of a computer. They are more comprehensive than the
After the computer is booted, the operational program BITs. Figure 8-32 shows an example of a defective card

Figure 8-32.—Example of a defective card index (DCI).

8-25

index (DCI) with error stop and recommended
corrective measures: Replace pcbs in locations
4C28-4C30.

PATCH OR REVISE SOFTWARE.—
Mainframes also have the option to allow you to
manually insert and make revisions of machine code or
insert revisions using external peripheral devices.
Patches or revisions to the software are written by
authorized personnel only. The patches or revisions are
entered using inspect and change routines or
equivalents using the controls, data entry, and data
display man/machine interface.

SUMMARY—COMPUTER
INSTRUCTIONS AND MAN/MACHINE

INTERFACES

In this chapter we introduced you to computer
instructions and to ways you can interface with a
computer. The following information summarizes
important points you should have learned:

COMPUTER INSTRUCTIONS— Computer
instructions are commands to the computer to tell the
equipment to perform a designated operation. The
instructions are processed by the central processing
unit.

PROGRAMS.— Programs are sequences of
instructions written for various purposes to solve
problems or types of problems on a computer, to
manage the computer’s own resources and operations,
and/or to maintain computers.

LEVELS OF INSTRUCTIONS.— Instructions
may be either microinstruction or macroinstructions (a
predetermined set of microinstruction).

INSTRUCTION TYPES.— Instructions may be
classified by what they do, their operation. They may

also be classified by their action on an operand-read,
store, or replace.

INSTRUCTION SIZES.— Instruction sizes vary
depending on the instruction and the computer.

INSTRUCTION FORMATS.— Every instruc-
tion has an operation (op) code to tell the computer what
to do. It may also have an operand to give the address
of the data to be operated on or to give other fields or
designators.

INTERFACING WITH COMPUTERS.— The
man/machine interfaces enable operators/technicians to
control the computer’s operation. These include
control panels and operator panels/consoles.

MAN/MACHINE OPERATING MODES.—
Computers can be operated in a variety of modes. This
is very helpful when you are troubleshooting. Run
mode continually executes instructions one after
another. Stop mode causes the computer to stop; it will
not restart until directed by some operator action. Step
mode enables you to have the computer execute one
instruction at a time so you can test the contents of
computer registers and memory locations to verify
correct operation or identify a problem.

MAN/MACHINE INTERFACE OPERA-
TIONS.— Many operations can be accomplished by
providing information to the computer through an
interface.

MAN/MACHINE INTERFACE FUNC-
TIONS.— Many general functions can be performed
through an interface.

It is up to you to learn all you can about how the
computer systems you work with process instructions
and what capabilities are available to you through
man/machine interfaces. This will enable you to
interpret computer instructions and interface with the
computer to diagnose and isolate problems.

8-26

